Factors Governing Intercalation of Fullerenes and Other Small Molecules Between the Side Chains of Semiconducting Polymers Used in Solar Cells

Miller, Nichole Cates; Cho, Eunkyung; Gysel, Roman; Risko, Chad; Coropceanu, Veaceslav; Miller, Chad E.; Sweetnam, Sean; Sellinger, Alan; Heeney, Martin; McCulloch, Iain; Bredas, Jean-Luc; Toney, Michael F.; McGehee, Michael D.

ADVANCED ENERGY MATERIALS

2012

While recent reports have established signifi cant miscibility in polymer:fullerene blends used in organic solar cells, little is actually known about why polymers and fullerenes mix and how their mixing can be controlled. Here, X-ray diffraction (XRD), differential scanning calorimetry (DSC), and molecular simulations are used to study mixing in a variety of polymer:molecule blends by systematically varying the polymer and smallmolecule properties. It is found that a variety of polymer:fullerene blends mix by forming bimolecular crystals provided there is suffi cient space between the polymer side chains to accommodate a fullerene. Polymer:tetrafl uoro-tetracyanoquinodimethane (F4-TCNQ) bimolecular crystals were also observed, although bimolecular crystals did not form in the other studied polymer:nonfullerene blends, including those with both conjugated and non-conjugated small molecules. DSC and molecular simulations demonstrate that strong polymer-fullerene interactions can exist, and the calculations point to van der Waals interactions as a signifi cant driving force for molecular mixing. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.